
World Transactions on Engineering and Technology Education  2003 UICEE
Vol.2, No.1, 2003

 33

INTRODUCTION

Jung’s theory of psychological types assumes that much
apparently random behaviour is actually quite orderly and
consistent. These consistencies result from differences in
the ways people perceive their surroundings and make
decisions.

Myers had the vision to apply that knowledge, determining how
people take in information, express their thoughts and feelings,
and go about their daily lives [1]. The Myers-Briggs Type
Indicator (MBTI) is based on Jung’s theory that people with
different personality profiles organise information and perceive
the world in different ways. The theory of psychological types
has the power to transform human relationships, particularly
teacher-student dynamics.

In short, the MBTI includes four internal scales related to
characteristic or preferred ways of becoming aware, reaching
conclusions, decision making and general orientation to a
private inner world or external world of actions. These
dimensions are called:

• Introversion (I) and extroversion (E);
• Sensing (S) and intuition (N);
• Thinking (T) and feeling (F);
• Perception (P) and judging (J).

To expand on this, E’s prefer to work interactively with a
succession of people, whereas I’s prefer work that permits
some solitude; N’s prefer working on a succession of new
problems and S’ prefer working with details; T’s want work
that requires logical thinking, whereas F’s want work that
provides service to people; J’s prefer work that imposes a need
for order, whereas P’s prefer work that requires adapting to
changing situations.

We all have personality qualities of each scale or parameter; we
simply prefer some qualities or are more comfortable with
some styles than others, just as right-handers are more
comfortable with the right hand but sometimes use the left
hand.

The MBTI describes 16 types that result from the dynamic
interplay of these four preferences – EI, SN, TF, JP. Types are
denoted by the letters of preferred orientations (such as ISTJ,
ENFP, INTP, etc), as shown in Table 1, together with the
percentage of type distribution of the adult population in the
USA [1]. It is important to understand that everyone uses all
eight preferences, not merely the four that are preferred. The
theory describes 16 distinct ways of being normal; no
preference is superior over any other preference, and no type is
superior over any other type, although in a given situation, the
preferences of one type may match the demands of the situation
better than those of a different type.

Table 1: The 16 MBTI types.

ISTJ
11.6%

ISFJ
13.8%

INFJ
1.5%

INTJ
2.1%

ISTP
5.4%

ISFP
8.8%

INFP
4.4%

INTP
3.3%

ESTP
4.3%

ESFP
8.5%

ENFP
8.1%

ENTP
3.2%

ESTJ
8.7%

ESFJ
12.3%

ENFJ
2.5%

ENTJ
1.8%

SOFTWARE ENGINEERING STUDENTS

A sample of 68 software engineering students were invited to
participate in this study to identify the personality profile of a
group of software engineering students, and were administered
the MBTI (Form G) to determine their personality types. This

Improving the teaching of software engineering

Luiz F. Capretz

University of Western Ontario
London, Canada

ABSTRACT: It has been suggested that different learning styles are associated with different personality types. It is believed that if
software engineering teachers know the personality profiles of their students, this in turn will encourage the teachers to vary their
own teaching styles to conform to the learning preferences of their pupils. The purpose of this research is twofold: firstly, this
investigation presents a survey that shows the personality profile of a group of software engineering students; secondly, the article
relates their personality profiles (which influence the way students learn) to the various ways a teacher can deliver a lecture in
software engineering. In order to reach different types of students in a course, teachers should be aware of several teaching strategies
where it is recommended that a range of exercises, assignments and activities be utilised in the classroom so that no software
engineering student is left out.

 34

investigation considered students in upper level university
classes. The type distribution of the software engineering
students is summarised in Table 2 [2].

Table 2: Type distribution of software engineers (N = 68).

ISTJ
N=13
19.1%

ISFJ
N=2
2.9%

INFJ
N=1
1.5%

INTJ
N=5
7.4%

ISTP
N=3
4.4%

ISFP
N=3
4.4%

INFP
N=2
2.9%

INTP
N=9

13.2%
ESTP
N=8

11.8%

ESFP
N=1
1.5%

ENFP
N=2
2.9%

ENTP
N=5
7.4%

ESTJ
N=8

11.8%

ESFJ
N=2
2.9%

ENFJ
N=1
1.5%

ENTJ
N=3
4.4%

This study has shown that ISTJ, ESTP, ESTJ and INTP
comprise almost 55% of the sample and are therefore
significantly over-represented, whereas ESFP, INFJ and ENFJ
are all particularly underrepresented in this sample. It is also
worth noting that there are more ISTJ (19%) than any other
type. This research also found more introvert (I=54%) than
extrovert (E=46%) types; slightly more sensing (S=57%) than
intuitive (N=43%); significantly more thinking (T=81%) than
feeling (F=19%); and fairly more judging (J=54%) compared to
perception (P=36%) type.

It should also be noticed that TJ’s comprise 46% of the sample,
IT’s comprise 43%, ST’s compose 46% and NT’s make up to
36% of the subjects. On the other hand, SF’s add up to 11%
only, and NF’s a mere 8% of the subjects. TJ’s, ST’s and NT’s
are abundant among software students. On the other hand, SF’s
and NF’s are scarce. A cluster of sensing, thinking and judging
types (STJ’s) were also found and is generally in line with type
theories.

Although software engineering attracts people of all
psychological types, certain traits are clearly more represented
than others in this field. These findings do not mean that career
success relates to the number of subjects of a type. The fact that
ISTJ’s outnumber any other type does not mean that they are
perceived to be the best in the area. Ackerman suggests that,
although interests and personality types may play a role in the
selection of a career, they may not predict success in that
particular area [3].

Moreover, Sodan claims that, in order for personal work and
relationships to be successful, a number of psychosocial
qualities are required, and she proposes a model based on the
Yin/Yang duality [4]. Due to the diverse nature of software
engineering, it is widely believed that no personality
instruments will ever accurately predict success in this area.

As a matter of fact, the software field is dominated by introverts
and thinking types, who typically have difficulty in
communicating with users and empathising with their problems.
This may partially explain why software systems are notorious
for not meeting users’ requirements. When software engineers
discuss how a task needs to be accomplished, the majority tend
to be poor at verbalising how the task affects the people
involved. In fact, the greatest difference between software
engineers and the general population is the percentage that

takes action based on what they think rather than on what
somebody else feels; this does not help bring software
engineers any closer to users.

It takes variety to conquer variety. Putting this in software
terms, it takes a variety of skills and personalities to solve the
myriad of problems related to software development. It might
be suggested that organisations would be well served by a
conscious attempt to diversify the styles or personalities of their
software engineers.

Nowadays, there are very few solo performers in most software
organisations; people have to work together in teams of some
sort, and it is almost always good to have some diversity on the
team in terms of psychological types. In other words, better
software will result from the combined efforts of a variety of
mental processes, outlooks and values. Therefore, all types are
important to software development as every type can make a
contribution to solve the so-called software crisis. Thus, the
software industry cannot afford to lose would-be professionals
who may come from a diverse group of students. But a crucial
question still remains: how to reach all types of students so that
they can be retained in a software engineering programme?

REACHING SOFTWARE ENGINEERING STUDENTS

A number of approaches exist to aid the understanding of
individual differences and their effects on teaching and
learning. Educators have been using the Myers-Briggs Type
Indicator (MBTI) to understand differences in learning styles
and to develop teaching methods that cater for the various
personality styles. Inspired by the MBTI, teachers have
developed a range of practices for effective teaching and
learning in a software engineering course. By devising various
approaches to teaching, teachers aim to reach every student in
different ways [5].

Understanding Extroverts and Introverts

Teachers can conduct classes with opportunities to talk and
problem solving aloud or in groups. Extroverts often learn
better when they can talk about the concepts they have just
heard in a lecture. They learn best when they have action
projects before or along the instruction. On the other hand,
introverts like to think through a problem before talking about
it; they should be given adequate time to formulate their
responses before discussing it and are more comfortable when
they can prepare their responses in advance.

In one of his lectures, the author, immediately after a lesson on
software design, asked his students to come up with a quick
design for a weather station system. The author divided the
students into groups so that each group contained only
extroverts or introverts. The groups with extroverts enjoyed the
exercise much more than the introverts, and came up with a
better design solution in a shorter period of time. The author
believes that, given the time and opportunity to do the exercise
as homework, members from the introverts’ groups would be
able to work out good solutions as well.

Recommended Tasks for Extroverts and Introverts

Extroverts: The task objective is to understand more clearly the
difficulties of carrying out the requirements specification for a
software system. Students are divided into groups of four

 35

people, in which two of them act as users (or clients), while the
other two act as systems analysts. A possible scenario for the
above role-play exercise occurs when the management from a
multi-screen cinema complex has decided that it is time to
replace its current manual ticket issue system with a new state-
of-the-art computer system.

Introverts: As they need time, quiet and space for internal
processing, once a task is assigned, allow them some private
time to reflect on the assignment and organise their thoughts
before expecting participation. A good task could be:

• Make a list of all software development tools that already

used. Classify them as standalone or integrated tools.
Which activities of the software lifecycle does each one
support? Which ones solely support engineering
requirements?

Challenging the Sensing and Intuitive

Sensing students favour understanding from trying it out
compared with intuitive students who are more inclined to think
it through. However, intuitive teachers find it easier to deal
with concepts rather than facts and prefer teaching courses that
deal with ideas and theories rather than real life situations. For
effective teaching, it is important for faculty to acknowledge
their own natural inclination towards intuition and to make a
conscious effort to recognise the learning preferences of their
sensing students.

By frequently introducing specific examples, facts and practical
applications, the sensing students will profit more from a
software engineering course that gives them the chance to come
up with real-life designs using particular methodology, rather
than just listening to the main concepts and formalities dictated
by a design methodology.

Meaningful Exercises for Sensing and Intuitives

Sensing: These students prefer the concrete to the abstract, and
tend to learn best in a step-by-step progression. As they rely on
experience rather than theory, these students should be
provided with two or three practical examples each time a
concept is introduced. Audiovisuals should also be used, like
movies and models, as straight lectures usually are not enough
to attract their attention. Hands-on exercises will engage their
senses, such as comparing the similarities and differences
between software design and hardware design.

Intuitives: They thrive in classroom situations that place a
premium on imagination, but are bored with factual lectures
and drills. As they need opportunities to be creative and
original, intuitive students should be challenged with problems
for which there are multiple solutions or different perspectives.
Exercises such as the following should be proposed:

• Write down a list of reasons in favour of using any

standardised design description (eg UML) and a list of
reasons against standardising the same form of
description.

• When the Ariane-5 rocket was destroyed, the news made
headlines in France. The Liberation newspaper called it A
37-billion-franc Fireworks Display on the front page.
What is the responsibility of the press when reporting
software related accidents?

Caring for the Thinking and Feeling Types

Software engineers need not only a broad-based technical
competence but also the ability to cope with societal change
and personal relationships. They need an appreciation of
society’s ethical problems and the interpersonal skills to
work effectively in teams towards a common solution.
Therefore, feeling types are much needed as software
engineers.

Those feeling students who find it difficult to go through a
software engineering course may be retained if teaching is
enhanced to encompass their preferred learning styles. Specific
addition to courses might include greater discussion of design
aesthetics, ethics, social values and human factors. These issues
are particularly dealt with in the author’s software engineering
courses. Two lectures in the course, which focus on human
factors in software engineering and ego-less programming,
have been incorporated to appeal more to students who have a
feeling preference.

Suggested Assignments for Thinking and Feeling Types

Thinking: These students excel in inductive reasoning and
perform well when there is a single correct answer. A possible
assignment for them would be:

• A well-known word processor consists of a million lines of

code. Calculate how many programmers would be needed
to write it, assuming that it has to be completed in two
years. Given that they are each paid $50,000 per year, what
are the costs of that development? (Remember that the
average programmer productivity is 20 lines of code per
day).

Feeling: These students are skilled in understanding other
people, so they should be presented with opportunities for
friendly interaction and positive feedback. An example of an
assignment is:

• Suppose you are the manager of a software development

project. One of the team members fails to meet the
deadline for the coding and testing of a module. What
would you do? For the same software project, three months
before the software is due to be delivered, the customer
requests a change that will require massive efforts. What
would you do?

Helping the Judging and Perceiving Types

Research has shown that the majority of teachers hold a
preference for judging, and thus demonstrate biases for order
and structure in the classroom. A teacher should use previous
successes in order to reinforce learners’ progression in a
systematic manner towards a specific outcome.

Nevertheless, a less organised (or somewhat lax) system of
instruction could be followed as well. Under such a scheme,
students determine their own rate and amount of learning,
considering their preferences, as they advance through a
series of tasks. With this method, the teacher acts as a
motivator through the use of cues and support on those tasks
being carried out in such a way that a student has the autonomy
to take up a particular task, learn and then move on to the next
activity.

 36

Suggested Activities for Judging and Perceiving Types

Judging: These students like schedule and predictability, and
closure of one topic before moving to the next. In order to cater
for them, judging preference students should be provided with a
course outline, showing those topics to be covered in each
grading period. A marking system should be utilised that
recognises and honours individual achievement. For instance:

• In order to pass the capstone project course, a student

must design and implement a prototype for a small
software system. In this course, designing, coding and
testing should be carried out by each of the students
individually or in teams under the supervision of a faculty
member.

• Progress report during the course and a final report should
be prepared. Each student must deliver a public lecture on
the work performed, followed by a demonstration on the
prototype developed.

• The deadlines and marking scheme are: prepare a project
proposal (3 weeks-10%), demonstrate a design (10 weeks-
10%), write a mid-term report (2 weeks-20%), carry out an
implementation (10 weeks-10%), deliver a public lecture
(2 weeks-10%), run a software demonstration (1 week-
10%), and write a final report (2 weeks-30%).

Perceiving: Perceivers tend to resist closure. They prefer
spontaneity so that they can explore things without pre-
planning. They like to work on multiple tasks simultaneously
and often work right up to, and even beyond the deadlines. An
instructor needs to make sure that there is some allowance for
flexibility as too many rules weigh heavily on this type of
student. Perceiving students could be assisted by teaching them
to work backwards from a deadline, this can be achieved by
helping them determine the latest date at which a project can be
started and still meet expectations, or even dealing with some
deadline slippage. The student’s progress is thereby improved
and learning is unhindered when reasonable bonuses and
penalties are used. It is far better to present an excellent report
one day after the deadline than to produce a lousy report in
advance; such a compromise can be easily applied to project
courses.

CONCLUSION

The ideas described in this article have been followed in two 4th
year courses named Software Requirements, and Testing and
Risk Assessment, which go hand-in-hand with another course
on Software Engineering Design II, wherein students develop
their capstone projects at the University of Western Ontario,
London, Canada.

The results have demonstrated that these ideas are extremely
effective in producing significant projects and have also
increased students’ satisfaction with these courses. This last
point was expressed and reinforced in course evaluations given
by students. The course evaluations are monitored by the
University and made available to the public worldwide over the
Internet.

Finally, a respectful learning environment invites both
instructors and students to listen and be heard, it respects
individual differences and honours each person’s right to hold
his/her beliefs and values; it encourages personal self growth
and other aspects. This is a collective responsibility, so it
depends on both students as well as educators.

REFERENCES

1. Myers, I.B., McCaulley, M.H., Quenk, N.L. and Hammer,

A.L., MBTI Manual. Palo Alto: Consulting Psychologists
Press (1998).

2. Capretz, L.F., Are software engineers really engineers?
World Trans. on Engng and Technology Educ., 1, 2, 233-
235 (2002).

3. Ackerman, P.L., A theory of adult intellectual
development: process, personality, interests and knowledge.
Intelligence, 22, 229-259 (1996).

4. Sodan, A.C., Toward successful personal work and
relations – applying a Yin Yang model for classification
and synthesis. J. of Social Behaviour and Personality, 27,
1, 38-71 (1999).

5. Capretz, L.F., Implications of MBTI in software
engineering education. ACM SIGCSE Bulletin - Inroads,
34, 4, 134-137 (2002).

	Improving the teaching of software engineering
	London, Canada

